
Studying the Impact of Inertial Constraints in Two-View
Reconstruction for Visual and Visual-Inertial Odometry

Andre Schreiber1, Hameed Abdul-Rashid2, and Jongwon Lee3

Abstract— In this project, we aim to integrate data from an
inertial measurement unit (IMU) into a two-view reconstruction
pipeline using Python. We utilize libraries like SymForce and
OpenCV for functionality like optimization and feature point
detection. However, we do not rely on existing libraries for two-
view reconstruction, inertial preintegration, or visual-inertial
optimization, opting instead to develop these components our-
selves to further our understanding of two-view reconstruction
and the integration of inertial data into a vision system. We
analyze the effect of the inertial data on various quantities of
interest–such as reprojection error–for visual odometry (VO)
and visual-inertial odometry (VIO) over frame sequences from
two publicly available VO/VIO datasets. We find that incorpora-
tion of the inertial data can lead to worse reprojection error as
compared to visual-only optimization, as the addition of inertial
factors forces the optimizer to consider both reprojection error
and consistency with IMU measurements in producing its solu-
tion. However, incorporating inertial data in VIO resolves the
scale ambiguity inherent in VO, enabling estimates of positional
changes between frames at scale — a capability not achievable
with visual-only solutions. Our code (and links to the data) can
be found at: https://github.com/andreschreiber/AE598Project.

I. INTRODUCTION

Odometry is the process of estimating the pose of an object
over time using data from sensors like IMUs. However,
purely inertial-based approaches to odometry show limita-
tions, as challenges like drift and sensor noise can lead
to the build-up of error over time [8]. While the effects
of these issues can be remedied (although not eliminated)
through the use of high-end sensors, such equipment can
be prohibitively expensive in many applications. Visual
odometry (VO) provides an alternative approach to inertial
odometry and involves estimating the pose of a camera over
time by processing a sequence of images captured from the
camera. However, VO is not without its own challenges, as
noisy, high-dimensional visual data needs to be processed in
order to compute relative pose, which can involve significant
computation as compared with purely inertial odometry. In
addition, VO using a monocular camera suffers from a scale
ambiguity, as pose changes can only be recovered up to
scale (unlike inertial odometry, which can resolve the metric
scale).

1Andre Schreiber is with the Department of Electrical Engi-
neering, University of Illinois, Urbana-Champaign, IL 61801, USA
(andrems2@illinois.edu)

2Hameed Abdul-Rashid is with the Department of Computer Sci-
ence, University of Illinois, Urbana-Champaign, IL 61801, USA
(hameeda2@illinois.edu)

3Jongwon Lee is with the Department of Aerospace Engineering,
University of Illinois, Urbana-Champaign, IL 61801, USA
(jongwon5@illinois.edu)

Visual-inertial odometry (VIO) involves fusing measure-
ments from an inertial device (e.g., an IMU) and a camera
to provide enhanced performance. By integrating both visual
and inertial data, VIO removes the scale ambiguity seen
in visual odometry, while also granting enhanced global
information (captured by cameras) to produce reduced drift
compared to purely inertial odometry [8]. Thus, VIO could
enable enhancements over both inertial and visual odometry
systems.

We seek to integrate inertial data into a two-view re-
construction pipeline (which is an important step in the
visual odometry process) to gain an understanding of how
inertial data is integrated into vision systems. To ensure a
sufficient understanding of the challenges involved, we plan
to implement each component from scratch in Python, only
using libraries like OpenCV for feature point detection and
SymForce for non-linear optimization. We utilize a two-
view reconstruction implementation that we implement from
scratch to perform visual odometry between two camera
images (estimating the relative pose and 3D locations of key
points up to scale). Then, we implement IMU preintegration
from scratch to integrate the IMU measurements and provide
the information needed for IMU optimization factors. Finally,
we incorporate these integrated IMU measurements into our
optimization formulation using a factor-graph approach.

We analyze the effects of integrating the IMU mea-
surements into our two-view reconstruction in terms of
reprojection error, computation time, and relative change in
pose on frame sequences from the KITTI [7] dataset and
EuRoC MAV dataset [1]. We find that the addition of the
IMU data into the non-linear optimization can lead to worse
reprojection error and fewer inliers as compared to visual-
only optimization, as visual-inertial optimization involves
additional inertial factors (which use potentially noisy data
from an IMU) that the optimizer seeks to optimize in addition
to reprojection error. However, we see that the incorporation
of inertial data resolves the scale ambiguity seen in the solu-
tion produced by only using visual information. Finally, we
find that visual-inertial optimization takes significantly more
computation time than visual-only optimization by involving
more optimization terms and requiring more optimization
steps for convergence.

II. METHODS

This section expands on each aspect of our proposed
project, including the implementation of VO/VIO, the dataset
that we use, and the method by which we evaluate our
approach.



A. Two-View Reconstruction

Two-view reconstruction is a fundamental component of
tasks like structure from motion (SfM) and visual odometry
(VO). The two-view reconstruction process involves detect-
ing feature points shared between two images, and using
these feature points to estimate the relative poses between
the two cameras which captured the images. In addition
to estimating camera poses, the 3D coordinate of each
feature point is calculated during the two-view reconstruction
process. In other words, the problem aims to estimate the
poses of two frames i and j :

RW
i ,pW

i ,RW
j ,pW

j ,

where the positions pW
i and pW

j are determined up to scale,
and the 3D locations of feature points observed in both
views:

pW
l , for l ∈ {1, . . . , L},

which are also up to scale. For this project, we refactor and
adapt our two-view reconstruction and SfM code from the
lecture to work with images from visual odometry datasets
[1], [7].

The implementation of two-view reconstruction (shown
in Fig. 1) can be summarized into three key steps: (1)
feature detection and matching, (2) computing an analytical
solution, and (3) refinement of the analytical solution using
non-linear optimization. The first step involves identifying
feature points in the two images, which is performed using
the SIFT feature point detector [9]. SIFT detects feature
points and provides the locations of these points as well as a
descriptor that describes a local region around each feature
point. Matches between the feature points are found by
comparing the descriptors of each feature point in the images
and applying a ratio test (to exclude ambiguous matches).
Once feature points have been detected and matched, they
can be used to obtain an analytical solution for the relative
poses of the cameras (using epipolar geometry) and for the
3D locations of the feature points (using triangulation). This
analytical solution is sensitive to outliers, so to improve
robustness to outliers we utilize RANSAC [4] for our two-
view reconstruction. Once the analytical solution is found, it
can be used as an initial guess for a non-linear optimization
based on reprojection error, where the cost function is defined
as follows:

L∑
l=1

(
∥rCil

∥2ΣC
+
∥∥rCjl

∥∥2
ΣC

)
+ λ(∥∆pij∥ − 1)2,

where rCil
and rCjl

represent the reprojection errors of the
3D feature point pl where l ∈ {1, . . . , L} for each view
i, j and ΣC is the modeled covariance associated with these
errors, which we set as a 2×2 identity matrix. Additionally,
during the optimization, the norm of the change in position
between frames, ∆pij , is constrained to be one using a
regularization parameter λ, which results in a solution where
the distance between camera poses is approximately 1.

Camera 1 Pose Camera 2 PoseFeature Points
(3D)

Image 1 Image 2

Feature Point Detection and Matching

Analytical Solution

Non-Linear Optimization

Image 1 Feature
Detections (2D)

Image 2 Feature
Detections (2D)

Fig. 1. Overview of the two-view reconstruction process.

Camera 1 Pose Camera 2 PoseFeature Points
(3D)

Image 1 Image 2

Feature Point Detection and Matching

Analytical Solution

Non-Linear Optimization Pre-Integration

IMU

Image 1 Feature
Detections (2D)

Image 2 Feature
Detections (2D)

Acceleration &
Angular Velocity

Poses, Velocity,
and Bias

Velocity Bias

Fig. 2. Modified two-view reconstruction with inclusion of IMU measure-
ments.

B. Two-View Reconstruction with Inertial Data

VIO combines camera and IMU data for state estimation,
offering several advantages. One advantage is its usefulness
in establishing feature point correspondences over short time
spans, particularly under challenging conditions when vision-
only correspondence matching may struggle (e.g., excessive
motion blur, dim lighting, or areas that lack distinctive visual
features). Another advantage is its ability to determine scales
for camera and map poses by adding constraints from inertial
data between frames. Our project focuses on this second
advantage.

Most modern VIO algorithms incorporate two main mod-
ules: “camera-IMU alignment” and “visual-inertial opti-
mization.” Camera-IMU alignment involves establishing the
IMU’s orientation relative to gravity and its biases — which
are crucial for successful IMU preintegration — as well as
scaling the 3D feature point map and trajectory from visual-
only multi-view reconstruction [2], [5]. In our work, we
assume that the initial orientation of the IMU in the world
frame and its biases are already established and provided
using open-source data. Furthermore, we set up our visual-
inertial optimization to meet the secondary objective by
utilizing a regularization term, the details of which will be
discussed in the following sections.



1) Visual-inertial optimization: Visual-inertial optimiza-
tion is built upon the previously mentioned two-view recon-
struction problem. The problem now aims to optimize the
poses of two frames i and j :

RW
i ,pW

i ,RW
j ,pW

j

where the positions pW
i and pW

j are now going to be
determined at scale, and the 3D locations of feature points
observed in both views:

pW
l , for l ∈ {1, . . . , L}.

Additionally, IMU data introduces new variables to the
optimization framework of the two-view reconstruction: the
velocity vW

i , and biases for the accelerometer and gyroscope
of the IMU (ba

i and bg
i , respectively). For simplicity, we

will omit the superscript W denoting the “world frame” in
subsequent discussions.

This integration notably includes the “IMU preintegration”
process [5], which computes changes in pose between frames
by aggregating measurements from the IMU’s accelerometer
and gyroscope (ranging from tens to hundreds of measure-
ments) into a single factor.

The change in pose between frames i and j, including
orientation, position, and velocity, without compensating
gravitational acceleration, is derived by preintegrating the
accelerometer and gyroscope readings ãk and ω̃k for k ∈
i, . . . , j − 1. This process integrates the IMU measurements
to estimate the cumulative effect on pose from one frame to
the next:

∆R̃ij =

j−1∏
k=i

Exp ((ω̃k − bg
i )∆t)

∆ṽij =

j−1∑
k=i

∆R̃ik (ãk − ba
i )∆t

∆p̃ij =

j−1∑
k=i

3

2
∆R̃ik (ãk − ba

i )∆t2,

where ∆t represents the time intervals between consec-
utive inertial measurements. The residual for the prein-
tegrated IMU measurements is described as: rIij

.
=[

r⊤∆Rij
, r⊤∆vij

, r⊤∆pij

]⊤
∈ R9, where

r∆Rij

.
= log

((
∆R̃ij

)⊤
R⊤

i Rj

)
r∆vij

.
= R⊤

i (vj − vi − g∆tij)−∆ṽij

r∆pij

.
= R⊤

i

(
pj − pi − vi∆tij −

1

2
g∆t2ij

)
−∆p̃ij ,

with ∆tij for time interval between frames and g for
gravitational acceleration. The associated covariance Σij

characterizes the preintegration noise vector η∆
ij , where

η∆
ij

.
=

[
δϕ⊤

ij , δv
⊤
ij , δp

⊤
ij

]⊤
∼ N (09×1,Σij) .

For the detailed derivations of η∆
ij and Σij , the readers are

advised to refer to the supplementary material [6]. Hence,

the residual contributes to the cost function as the term∥∥rIij

∥∥2
Σij

.
Biases, typically modeled as slowly varying over time,

require accounting for their change between frames i and j.
This is achieved using the following terms:∥∥bg

j − bg
i

∥∥2
Σbgd +

∥∥ba
j − ba

i

∥∥2
Σbad .

The covariances are defined as Σbgd .
= ∆tij Cov(η

bg) and
Σbad .

= ∆tij Cov(η
ba), respectively, where Cov(ηbg) and

Cov(ηba) describe the bias evolution over time, modeled as
Brownian motion and are assumed to be predetermined.

As a result, the cost function for the two-view reconstruc-
tion framework with inertial data integration is defined as
follows:
L∑

l=1

(
∥rCil

∥2ΣC
+

∥∥rCjl

∥∥2
ΣC

)
+

∥∥rIij

∥∥2
Σij

+
∥∥bg

j − bg
i

∥∥2
Σbgd +

∥∥ba
j − ba

i

∥∥2
Σbad

+ λ

(
∥pj − pi∥ −

∥∥∥∥Ri∆p̃ij + vi∆tij +
1

2
g∆t2ij

∥∥∥∥)2

,

where rCil
and rCjl

represent the projection errors of the
3D feature point pl where l ∈ {1, . . . , L} for each view
i, j and ΣC is the modeled covariance associated with these
errors, which is set as a 2× 2 identity matrix. Additionally,
during the optimization, the norm of the change in position
between frames expressed in the world frame, pj − pi, is
constrained to match the displacement derived from prein-
tegrated data — Ri∆p̃ij + vi∆tij + 1

2g∆t2ij — using a
regularization parameter λ. This approach, not typical in
standard visual-inertial optimization formulations, ensures
that the scale aligns with the inertial data. We introduce
this term to enforce scale alignment directly within the
optimization process, eliminating the need for pre-scaling as
a preprocessing step.

C. Dataset and Evaluation

Several potential datasets exist for evaluating a VO/VIO
system. For example, the KITTI [7] dataset is commonly
used for benchmarking VO/VIO approaches and features
image sequences collected from a car navigating throughout
a city in Germany. Each sequence in KITTI features IMU
measurements and high-accuracy GPS readings from a com-
bined GPS/IMU system, as well as camera images captured
by several cameras mounted on the vehicle. Ground-truth
poses are provided in the dataset with errors of less than
10 cm [11]. The EuRoC MAV dataset [1] features several
sequences captured from indoor scenes by a drone, where
each sequence has high-accuracy (1 mm) ground-truth pose
measurements, as well as IMU readings and camera images
from a stereo camera. The TUM VI dataset [11] features
several sequences from a hand-held rig with high-accuracy
ground-truth poses (1 mm) across both indoor and outdoor
settings.

For our experiments, we use the KITTI dataset [7] and Eu-
RoC MAV dataset [1] as they represent interesting scenarios



(outdoor driving and drone flight, respectively) and contain
the necessary data for evaluating a visual-inertial odometry
system (namely, camera images, IMU readings, and high-
accuracy ground-truth poses).

The data collection platform for KITTI [7] is shown in
Fig 3. The authors of the dataset provide raw data for
each run, as well as post-processed data that synchronizes
that data from each sensor and performs additional post-
processing (e.g., undistorting the images from the cameras).
As we are focused on monocular visual odometry and KITTI
features data from several cameras, we opt to use the camera
denoted cam0 as the camera for our experiments. The camera
provides images with a resolution of 1242×375 and has been
calibrated by the authors of the dataset. We use the provided
calibration settings for our two-view reconstruction pipeline.
The calibration settings specify fx, fy , cx, and cy , and we
use the post-processed data which feature undistorted images
(so we do not need to explicitly model camera distortion
when using KITTI). In addition, the camera-IMU extrinsic
parameters (specifying the pose of the camera relative to the
IMU) are crucial measurements for our approach, and we
use the values for such parameters that are provided by the
authors of KITTI.

We also provide experiments on the EuRoC MAV dataset
[1], which uses the data collection setup shown in Fig. 4.
Although images from two cameras are provided in the
EuRoC MAV dataset, we only use the images from cam0
(which have a resolution of 752×480 pixels). In addition, like
with KITTI, calibration settings for intrinsic and extrinsic
parameters are provided by the authors of the dataset, and
we use the provided values. However–unlike in KITTI–the
camera images in EuRoC MAV are not processed to remove
distortion and the images show significant distortion effects.
To account for this, we undistort feature point locations using
a standard distortion model [3] before passing them through
our two-view reconstruction pipeline (we use the distortion
coefficients provided by the authors of EuRoC MAV for
undistorting the points).

We analyze our method using reprojection error on the
analytical solution, the visual-only optimization, and the
visual-inertial optimization. The reprojection error for a point
can be defined as follows:

∥r∥ = ∥q− proj(p)∥,

where q ∈ R2 is the (undistorted) location of the 2D detected
feature point and p ∈ R3 is the 3D location of the point to
be projected (represented in the frame of the camera used for
the projection). The function proj(p) performs projection and
depends on the intrinsic parameters of the camera (fx, fy ,
cx, and cy):

proj(p) =
[
fx(

px

pz
) + cx

fy(
py

pz
) + cy

]
,

where px, py , and pz are x, y, and z components (respec-
tively) of p.

Fig. 3. Data collection platform used in the KITTI dataset [7]. The image
is from the paper introducing the dataset.

Fig. 4. Overview of the sensor setup on the Asctec Firefly drone used
to collect the EuRoC MAV dataset [1]. The drone is equipped with two
cameras and one IMU sensor. The image is from the paper which introduced
the dataset.

III. EXPERIMENTAL RESULTS

A. Reprojection Error

We present results for reprojection error of each method
(analytical visual-only solution, non-linear visual-only op-
timization, and non-linear visual-inertial optimization) in
Table I for both KITTI [7] and EuRoC MAV [1] datasets.
We chose a specific pair of frames from the middle of the
Machine Hall 01 Sequence (a sequence labeled “easy”) on
the EuRoC MAV dataset. For the KITTI dataset, we selected
a specific pair of frames from the middle of Sequence 22,
captured on September 26, 2011.

The mean and standard deviation for the reprojection error
of inlier points are reported, as are the number of inliers
for each solution. The results in Table I demonstrate that
the reprojection error for the analytical solution shows a
relatively low error on KITTI (mean inlier error of less than
0.1 pixels), but the error is further reduced after visual-only



non-linear optimization (with both the analytical solution and
non-linear optimization showing a similar number of inliers).
On the other hand, the visual-inertial optimization shows
significantly larger error than both the analytical solution
and the visual-only optimization of the analytical solution. In
addition, the number of inliers for visual-inertial optimization
is significantly smaller than with the two alternative methods.
Therefore, visual-inertial optimization leads to significantly
worse reprojection error on KITTI. While this might initially
seem surprising, both the analytical method and visual-only
optimization only use visual data and thus it can be expected
that these methods could lead to lower reprojection error than
the visual-inertial method (which includes IMU data at a low
rate at 10Hz that may conflict slightly with the data cap-
tured by the cameras, thus increasing error). However, with
all approaches (analytical solution, visual-only optimization,
and visual-inertial optimization), there are a non-negligible
number of inliers, and the inlier reprojection error remains
relatively small (less than 0.5 pixels on average).

The results in Table I on EuRoC MAV show different
conclusions. In particular, the analytical solution for EuRoC
MAV shows significantly higher error than both visual-only
optimization and visual-inertial optimization, with visual-
inertial optimization showing the lowest reprojection error
on inliers. For these results, we also see a similar number of
inliers between the analytical solution and non-linear visual-
only optimization, whereas the visual-inertial optimization
shows a lower number of inliers, likely due to the inertial
data leading to points with higher error as the optimization
tries to incorporate inertial constraints that could conflict
with purely visual constraints. The seemingly better results
of visual-inertial optimization on EuRoC MAV compared to
KITTI might stem from the denser inertial data on EuRoC
(sampled at 200Hz) compared to KITTI (sampled at 10Hz).
This higher sampling rate likely results in a smaller error in
preintegrated motion, bringing it closer to the ground truth
and, in turn, benefiting the optimization process. The smaller
number of inliers could also explain the slightly smaller inlier
reprojection error of the visual-inertial approach (as larger
errors are excluded from the mean error calculation by being
classified as outliers). However, as before with KITTI, the
inlier errors for each method are quite small, with the average
inlier error for each method being less than 0.5 pixels.

Again, the differing performances of visual-inertial op-
timization in terms of reprojection error on EuRoC MAV
(where visual-inertial optimization outperformed the analyt-
ical solution) and KITTI (where visual-inertial optimization
performed significantly worse than the analytical solution
in terms of reprojection error) could be due to a variety
of reasons. For example, KITTI features lower-frequency
IMU measurements and larger metric displacements (as the
car moves quickly), which could lead the IMU factors to
have greater disagreement with the visual information due to
drift (thereby negatively affecting the optimization outcome).
Meanwhile, the EuRoC MAV dataset features significantly
higher-frequency IMU measurements (potentially from a
more high-end IMU) and smaller displacements, which (over

short time horizons) could lead to more reliable IMU factors
that agree more with visual data.

B. Estimated Change in Pose Between Frames

Table II shows the magnitude of the estimated changes
in position — ∆pij

.
= pW

ij (in meters) — and orientation
— ∆Rij

.
= Ri

j (in degrees) — between two frames across
different methods (analytical solution, visual-only optimiza-
tion, visual-inertial optimization) and compares them to the
ground truth for both the EuRoC MAV and KITTI datasets.
The analytical solution and visual-only optimization show
identical estimates for the change in position ∆pij on both
datasets — equal to one, consistent with their formulations
that fix ∆pij to one. Conversely, the visual-inertial optimiza-
tion presents estimates closer to the ground truth on both
datasets — 2.63 m and 2.78 m on KITTI, and 0.32 m on
EuRoC MAV for both methods respectively. This improved
accuracy is likely due to the incorporation of preintegrated
inertial data into the optimization framework, aligning the
estimates more closely with ground truth, particularly on
EuRoC MAV. Regarding the changes in orientation ∆Rij ,
on the other hand, none of the methods consistently provided
estimates notably closest to the ground truth.

C. Computation Time

Results for the computation time for each method (in
seconds) are shown in Table III. For these results, we note
that the analytical solution forms the basis of both non-
linear iterative optimization methods; thus, the computation
times for both optimization methods reported in Table III
should be regarded as in addition to the time taken for
deriving the analytical solution. Thus, the analytical solution
is computed faster than the full optimization solutions, as it
forms a prerequisite step for optimization. We also see that
the visual-only optimization takes significantly less time to
compute than the visual-inertial optimization. Such a result
is due to the added computation required to incorporate the
inertial terms (including pre-integration and computations
for the IMU factors), as well as the greater number of
iterative optimization steps needed for convergence of the
visual-inertial optimization as compared with the visual-only
solution.

We do note that the reported computation times will
depend on the parameters of the two-view reconstruction
program. For example, using a larger threshold for the ratio
test (which is used to discard potentially ambiguous matches)
will lead to a larger number of points to use for two-view
reconstruction, leading to a longer computation time. In
addition, we note that even with the settings used, the run-
time performance is still not near real-time (taking seconds
to compute a solution in each method). This slow run-time
performance can be attributed to un-optimized code with
an implementation in Python (rather than C++). Beyond re-
writing the code in C++, several optimizations could also
be made. For example, the RANSAC implementation of the
analytical solution could be parallelized; however, we did not



TABLE I. Reprojection error of analytical solution, visual-only optimization, and visual-inertial optimization methods compared on EuRoC MAV’s
Machine Hall 01 sequence [1] and KITTI’s drive sequence 22 (09/26/2011) [7]. Across both datasets, visual-only optimization produces the lowest

reprojection error between the two frames. The number of inliers for the visual-inertial optimization is notably lower than the analytical solution and
visual-only optimization.

Dataset Method Num of Inliers ⇑ Image 0 Reprojection Error
(Pixels) ⇓

Image 1 Reprojection Error
(Pixels) ⇓

KITTI [7]
Analytical Solution 145 0.087 ± 0.080 0.093 ± 0.088

Optimization (Visual-Only) 144 0.075 ± 0.080 0.070 ± 0.072
Optimization (Visual-Inertial) 40 0.338 ± 0.152 0.321 ± 0.145

EuRoC MAV [1]
Analytical Solution 118 0.462 ± 0.724 0.441 ± 0.703

Optimization (Visual-Only) 112 0.131 ± 0.118 0.124 ± 0.111
Optimization (Visual-Inertial) 78 0.112 ± 0.087 0.105 ± 0.081

TABLE II. Magnitude of change in pose between frames for analytical solution, visual-only optimization, and visual-inertial optimization methods
compared on EuRoC MAV’s Machine Hall 01 sequence [1] and KITTI’s drive sequence 22 (09/26/2011) [7]. The visual-inertial optimization’s

incorporation of inertial data resolves scale ambiguity issues as seen with the relative change in ∆pij (position) between frames when compared to the
ground truth.

Dataset Method ∆pij [m] ∆Rij [deg]

KITTI [7]

Analytical Solution 1.00 7.11
Optimization (Visual-Only) 1.00 7.10

Optimization (Visual-Inertial) 2.63 7.95
Ground Truth 2.78 7.21

EuRoC MAV [1]

Analytical Solution 1.00 6.88
Optimization (Visual-Only) 1.00 8.08

Optimization (Visual-Inertial) 0.32 8.02
Ground Truth 0.32 7.82

TABLE III. Computation time measurements of single analytical solution, visual-only optimization, and visual-inertial optimization on EuRoC MAV’s
Machine Hall 01 sequence [1] and KITTI’s drive sequence 22 [7]. Although the computation time for the analytical solution is isolated in this table, its
output is an input for both optimization-based methods. On both datasets, visual-inertial optimization is an order of magnitude slower than visual-only

optimization.

Dataset Method Num. of Inliers ⇑ Comp. Time (seconds) ⇓

KITTI [7]
Analytical Solution 145 2.91

Optimization (Visual-Only) 144 0.83
Optimization (Visual-Inertial) 40 11.90

EuRoC MAV [1]
Analytical Solution 118 2.41

Optimization (Visual-Only) 112 1.03
Optimization (Visual-Inertial) 78 10.19

rigorously optimize our code as it was out of scope for this
project.

D. Qualitative Examples

We show qualitative results of reprojected points for
visual-only and visual-inertial two-view reconstruction on
KITTI and EuRoC MAV in Fig. 5 and Fig. 6, respectively.
These results reinforce the conclusions in Table I, as both
figures show fewer inliers with visual-inertial optimization
as compared with visual-only optimization (with the reduc-
tion in inliers being particularly prominent on KITTI). In
addition, the reprojected 3D points (red) and detected 2D
points (blue) for inliers overlap closely, which is consistent
with the low inlier reprojection error seen in Table I.

IV. CONCLUSIONS

In this work, we show that integrating inertial data into
two-view reconstruction optimization resolves scale ambi-
guity in pose estimates while producing significantly fewer
inliers and potentially larger reprojection error. In addition,

the visual-inertial strategy requires greater computation time
when compared to visual-only methods.

Several possible avenues of future work exist. One inter-
esting direction would be to expand our analysis to incor-
porate not just two-view reconstruction but also analyze the
effect of adding inertial data for sequences of more than two
images. Another avenue of work could be to analyze the
performance of alternative feature point detectors, such as
ORB [10]. The run-time performance of our method leaves
much to be desired (with the two-view reconstruction and
optimization taking seconds to complete), and a useful real-
time visual-inertial odometry system would run at a much
higher rate (on the order of milliseconds, to enable pose
estimates at camera frame rate). Thus, optimizing our code
(for example, by converting it to C++) would be an additional
avenue for future work.

ACKNOWLEDGMENT

We would like to thank the authors of the KITTI dataset
and EuRoC MAV dataset for making their data openly
available. We would also to thank Professor Bretl for the



Fig. 5. Qualitative examples from two frames of the KITTI dataset (on sequence 0022 from 09/26/2011) [7]. In the images, the 2D detected points for
inliers are shown in blue, whereas the corresponding reprojected 3D points are shown in red. The two frames on the top used the visual-only optimization
method, while the two frames on the bottom used visual-inertial optimization. The visual-inertial optimization results show significantly fewer inliers.

Fig. 6. Qualitative examples from two frames of EuRoC MAV (on sequence Machine Hall 01) [1]. In the images, the 2D detected points for inliers are
shown in blue, whereas the corresponding reprojected 3D points are shown in red. The two frames on the top used the visual-only optimization method,
while the two frames on the bottom used visual-inertial optimization. The visual-inertial optimization results show fewer inliers.



course, and for the description of two-view reconstruction
and structure from motion that was adapted for this report.

REFERENCES

[1] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,”
The International Journal of Robotics Research, vol. 35, no. 10, pp.
1157–1163, 2016.

[2] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[3] C. B. Duane, “Close-range camera calibration,” Photogramm. Eng,
vol. 37, no. 8, pp. 855–866, 1971.

[4] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[5] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “IMU preinte-
gration on manifold for efficient visual-inertial maximum-a-posteriori
estimation,” in Robotics: Science and Systems XI, 2015.

[6] ——, “Supplementary material to: Imu preintegration on manifold
for efficient visual-inertial maximum-a-posteriori estimation,” Georgia
Institute of Technology, Technical Report GT-IRIM-CP&R-2015-001,
2015.

[7] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012.

[8] G. Huang, “Visual-inertial navigation: A concise review,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 9572–9582.

[9] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, pp. 91–110,
2004.

[10] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An effi-
cient alternative to SIFT or SURF,” in 2011 International Conference
on Computer Vision, 2011, pp. 2564–2571.

[11] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, and
D. Cremers, “The TUM VI benchmark for evaluating visual-inertial
odometry,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 1680–1687.


	Introduction
	Methods
	Two-View Reconstruction
	Two-View Reconstruction with Inertial Data
	Visual-inertial optimization

	Dataset and Evaluation

	Experimental Results
	Reprojection Error
	Estimated Change in Pose Between Frames
	Computation Time
	Qualitative Examples

	Conclusions
	References

