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Project Objective E

We study the impact of adding inertial constraints (e.g., IMU factors) for
optimizing two-view reconstruction

e Two-view reconstruction as covered in class only uses monocular visual data
and suffers from a scale ambiguity

* Inertial Measurement Units (IMUs) provide measurements of acceleration and
angular velocity that can resolve this ambiguity and potentially improve accuracy

 We wish to combine IMU and vision data, analyzing how IMU factors affect our
two-view reconstruction



Project Agenda E

Completed Tasks:

e Adapted our SfM code to work with VO/VIO datasets
e Implemented IMU preintegration “from scratch”
e Integrated IMU factors into the two-view reconstruction optimization

e Analyzed the two-view reconstruction with and without IMU factors, in terms of
reprojection error
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Forster, Christian, et al. "IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation," RSS. 2015.



Pre-Integration: Our implementation shows significant drift
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Optimization Formulation (Visual-Only)
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Optimization Formulation (Visual + Inertial)
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Results (Reprojection Error)

Method Image 0 Reprojection Error Image 1 Reprojection Error
(Pixels) (Pixels)

Analytical Guess 0.073 £ 0.272 0.071 £ 0.259

Non-Linear (Visual-Only) 0.031 £ 0.032 0.031 £ 0.031

Non-Linear (Visual-Inertial) 0.043 + 0.041 0.043 £ 0.040
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Results (Reprojection Error)

Method Image 0 Reprojection Error Image 1 Reprojection Error
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Summary & Key Takeaways

¢ Integrating inertial data is hard!

e Addition of IMU data in optimization leads to a slight drop in
reprojection error as compared to visual-only optimization

e Post-optimization (both visual-only and visual-inertial) results show
lower error than the initial guess with regards to reprojection error



