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Abstract

Pixel-wise image segmentation has grown in impor-
tance over the last few years, and this technique has
great potential in many fields, especially autonomous
driving. One of the downfalls of traditional approaches
is the difficulty in generating datasets with labeled se-
mantic maps on a large scale, which motivates the ne-
cessity of developing unsupervised approaches to the
semantic segmentation. We found that the Vision
Transformer (ViT), which is effective in perceiving an
image’s information in a global context, brings a sig-
nificant performance gain in semantic segmentation in
a supervised manner. However, the existing literature
lacks the application of a ViT backbone in an unsu-
pervised setting and instead focuses on conventional
approaches leveraging a convolutional neural network
(CNN) represented as an “encoder-decoder” architec-
ture. This aspect establishes our objective throughout
the project. We will be exploring three different ar-
chitectures that each have unique approaches to build-
ing these segmentation maps: An unsupervised con-
volutional approach called W-Net, a supervised Vision
Transformer known as Segmenter, and lastly a differ-
ent approach to leveraging attention maps in the self-
supervised DINO architecture.

1. Background

There is currently not a lot of literature tackling the
problem of unsupervised semantic segmentation so we
will consider some of the unique approaches that have
been attempted here.

1.1. Convolutional Approach

Convolutions have been the main method of image
processing and feature extraction for computer vision

applications for years. UNet [4] was originally made
for efficient end-to-end biomedical imaging segmenta-
tion, but today is used for an abundance of applica-
tions in semantic segmentation. The power of UNet
comes from its unique skip connections, where features
learned in the encoder are directly concatenated to the
decoder. The intuition of the encoder/decoder archi-
tecture is that we hope to use convolutional feature
extraction where we force the model to extract only
the most relevant features. The features that are most
important are chosen by the ability to remap these im-
ages back to either a segmentation map or the original
image depending on if we are in a supervised or unsu-
pervised setting.

1.2. Contrastive Detection

Contrast has been a very popular approach used in
unsupervised learning and pre-training. The general
purpose of contrastive loss during learning is to force
the model to group similar classes together. For ex-
ample, when learning the embeddings of pixels for all
the images, we want to have pixels originating from the
same class (without directly being given the class label)
to group together in the vector space. This method ef-
fectively converts our images into embeddings on which
we can use standard unsupervised techniques such K-
Means clustering to segment our different proposed
classes.

1.3. Vision Transformer

Convolutions have been known to have some major
limitations: 1) Poor translational invariance, 2) Lack
of information regarding position or orientation, and
3) Assumption that pixels close together are of more
importance. The Vision Transformer architecture can
solve many of the limitations of convolutions though
with a penalty of higher computational cost. The Vi-



sion Transformer adopts much of the popular Trans-
former architecture used widely in NLP, but with a new
edition of the Patch Encoding. As we know in NLP,
the input of a Transformer has to be a sequence, but
we don’t have sequences of pixels in the same way that
we do text. To solve this, the authors leverage patch
encodings which split the image into 16x16 patches,
flatten them and use a linear layer to generate our rep-
resentational embeddings. The unique ability of this
technique is that the model can learn contextual re-
lationships across the entirety of the image which is
crucial in a segmentation problem.

The most important aspect of the transformer ar-
chitecture is the multi-headed attention mechanism.
What this does is given an embedded sequence we will
generate three separate vectors: key, query, and value.
Our goal is to find the weights that emphasize the parts
of the keys and queries that are highly correlated, and
then we use this as a weighted average across all of
our values. By doing so, we will be emphasizing the
portions of the values that are indicative of our out-
put while muting the others. Another feature of the
transformer is the input and output tensor shapes are
identical and this allows us to easily stack multiple
transformer layers to learn many representations of the
image. Mathematically it can be shown as
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Next, we also have to include information about
the position of a patch in the image known as a po-
sitional encoding. This encoding is a 1D parameter
that will indicate the position of a patch with respect
to all the others. By doing so, when finding the weights
between keys and queries, maintains the spatial posi-
tioning between them. The other reason that we need
positional encodings is transformers are by design per-
mutation equivariant. This would imply that the or-
der in which we feed sequences does not determine
the weights learned between them during self-attention,
but this does not fit our need as we are modeling images
with clear spatial dependencies. The original paper rec-
ommends that we use the following as our positional
encodings

PEpos,Qi = Sin(pos/lOOOOQi/dmodel)
PEpos,2i+1 = COS(pOs/]_()O()()Qi/dnmdcl)7

where pos is our position and ¢ is the dimension. But
there is an entire literature of types of positional encod-
ings we can use and it does become problem-dependent.
Instead, we opted to use learnable parameters for our
encodings that will be updated during the training pro-
cess.

2. Methods
2.1. Convolutional W-Net

The supervised approach in image segmentation has
difficulties in getting a large amount of pixel-level la-
beled data sets. To tackle this issue, unsupervised ap-
proaches using FCN have been investigated recently.
The encoder-Decoder model is widely used for unsu-
pervised feature learning. Based on the idea of U-
Net architecture, W-Net [10] suggests encoder-decoder
models using two FCN architectures where each ar-
chitecture resembles the shape of U-Net. The biggest
difference between this architecture and U-Net is the
use of depth separable convolution layers. While U-Net
uses 3x3 convolutional layers repeatedly, W-Net uses
a depth separable convolution layer which consists of
depthwise and pointwise convolutions. This enables
W-Net to examine spatial and depth dimensions inde-
pendently.

Each of the two architectures works as an encoder
and a decoder. To jointly train the encoder and the de-
coder, W-Net uses different loss functions at each step.
Firstly, in the encoder, it uses Soft N-Cut Loss which is
based on the N cut loss proposed by [5]. Cut loss mea-
sures dissimilarity between the two disjoint sets using
the total weight of the edges that have been removed:
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where k is a label in K, A is a set of pixels in each
label weight, and V is the set of all pixels. Weight w
computes the likelihood of two pixels belonging to one
object. Brightness and the spatial location information
of the pixel are used to compute the similarity between
two pixels ¢ and j:
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where each of X and F represent the spatial location
and feature vectors of each pixels. To apply this loss
function to the training optimization process, the au-
thor of W-Net uses soft version N-cut loss to make it
differentiable. Therefore, the soft N-cut loss used to
train the encoder is computed as follows:
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In the decoder, it minimize reconstruction error which

is a mean square loss between the raw inputs and the
decoder outputs:
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Since the outputs of the FCN are coarse, post-
processing is necessary after getting the initial predic-
tion from the trained model. In W-Net, Conditional
Random Fields (CRF) and hierarchical segmentation
are used to smooth the coarse output of FCNs and
merge over segmented partitions.

2.2. Vision + Mask Transformer (Segmenter)

Segmenter [6] proposes to perform supervised se-
mantic segmentation with an end-to-end transformer
architecture.

Genrating Patchwise Embeddings: An image x €
RHXWXC __where H, W, C stand for height, width,
and channel correspondingly—is split in to sequence
of patches x = {x1,...,zn} € RNXPQXC, where
each patch has a size (P,P) and N, the number of
patches, is HW/P2. After applying flattening and lin-
ear transformation to them, we obtain their embed-
dings xo € RVXP. Learnable position embeddings
pos = {posy,...,posy}t € RV*P are added to x¢ to
yield the sequence of input tokens zy = xg + pos €
RYN*P which will be encoded by transformer with at-
tention mechanism.

Encoding by Transformer: A transformer composed of
L layers is applied to the input tokens zy, where every
layer consists of a multi-headed self-attention (MSA)
block followed by multi-layer perceptron (MLP) block
with layer normalization (LN) and skip connection:

a;,_1 = MSA(LN(Zlfl)) +2z;, 1
z; = MLP(LN(al_l)) + a;—1,

where i € {1,..., L}. Hence, the L-layered transformer
yields encoded tokens z; € RV*P the sequence of
contextualized tokens containing rich semantic infor-
mation, from the input tokens zy of embedded patches
with position encoding.

Decoding by Transformer: The resulting encoded to-
kens zj are processed along with class embeddings
c = {e1,...,cx} € REXPwhich are also learnable
like the position embeddings (pos). The class em-
beddings are initialized at random, and will serve as
masks for generating segmentation maps after trans-
formation, which will be explained in the next para-
graph. A transformer composed of M layers—which
is different from what is used for generating the en-
coded tokens z;—is applied to both z; and c and gen-
erates their L2-normalized output z}, € RN*P and
cy € REXP respectively. The scheme leveraging
instance masks generated by a transformer to facil-
itate yielding meaningful information from patch to-
ken outputs, so-called mask transformer, is inspired by
DETR [1], Max-DeepLab [7], and SOLO-v2 [8], but
Segmenter [0] is distinct from them in the sense that it

shares the same transformer to process both patch-wise
tokens and instance masks.

Semantic Map Generation: The set of class masks indi-
cating the per-patch class score is s = Z’MCT € RVXK,
This is reshaped into s € RH/PXW/PXK tq be a 2-D
shape and bilinearly upsampled to the original image
size to obtain a feature map s’ € RIXWXK = A soft-
max is then applied on the class dimension followed by
a layer norm to obtain pixel-wise class score to form
the final outcome so-called “segmentation map”.

2.3. DINO Attention Maps

DINO is a self-supervised architecture that was de-
veloped by Facebook AI and has the ability to learn
very detailed representations from unlabeled data.
This is not your standard semantic segmentation ap-
proach where we are given pixel labels to understand
what class each object belongs to. Instead, the model
uses contrast to cluster together similar objects from
ImageNet and by doing so our attention layers in the
vision transformer give a nice separation between ob-
jects of interest and the background.

Let us delve deeper into how this architecture
works. The main process the model uses is called self-
distillation where there are two parallel and identical
networks known as the student and teacher. These
networks can technically be any standard architec-
ture used in computer vision, but vision transformers
give the best results due to their attention mechanism.
Next, it is important to note that no training happens
in the teacher network, but rather the weight of the
teacher will be an exponentially weighted average of
the student. We can draw on the Momentum Contrast
(MoCo) to better understand this.

The first important note of contrastive loss is that
given two crops of an image, where one may have been
modified with different augmentations, the model is
supposed to learn that they still contain the same mu-
tual information. Therefore the model will assign sim-
ilar latent representations to similar images. The only
issue with contrastive loss is that the comparisons are
made across a single batch, and with large models and
image sizes, this can be a very small set of samples. Mo-
mentum contrast instead performs something similar
to gradient accumulation where we will aggregate mul-
tiple mini-batches for contrast. An exponential moving
average of the weights are then calculated based on the
accumulated student weights and then directly copied
over to the teacher. The other benefit of this method
is that it does not allow for mode collapse to occur be-
cause if the teacher directly copied the student weights,
they may output identical embeddings regardless of in-
put.



Another step taken towards avoiding mode collapse
is centering and sharpening the inputs of the teacher
network. Centering is the process of subtracting the
mini-batch mean from the current batch and sharp-
ening emphasizes peaks in the target distribution to
exaggerate differences between the image embeddings.
Both the student and teacher models then use a soft-
max and we use cross-entropy loss to try to make the
output distribution of our student embeddings to be as
close as possible to the teacher embeddings. By doing
so the model will force similar embeddings closer to-
gether in the vector space, and we can use K-nearest
neighborhood (KNN) to calculate the accuracy of how
well the classes were clumped together.

3. Implementation and Results
3.1. Implementation Details

Initial model training on our smaller MP4 dataset
was done on Google Colab. Additional training on the
ADE20K MIT Scene Parsing Dataset [11] was done
in a distributed fashion across two Nvidia Titan RTX
GPUs. Specifics of our implementations varied be-
tween the different models.

In our replication of the Segmenter model, we fol-
lowed similar techniques used by the original paper.
We leveraged a pre-trained “tiny” vision transformer [9]
with a patch size of 16 on images of size 384x384. We
also used the SGD optimizer with a learning rate of
0.001 and momentum of 0.9. To help curb over-fitting
we added dropout weights of 0.2 to our linear and at-
tention layers. Lastly, we implemented a learning rate
scheduler to reduce during the plateau.

W-Net uses Adam optimizer both for the encoder
and the decoder training. When training on the MP4
dataset, we use a learning rate of 0.003 for the en-
coder and 0.004 for the decoder with 30 epochs and
set K = 9 which is meant to be the number of classes.
For ADE20K dataset, we use a learning rate of 0.0005
with 30 epochs. Since W-Net trained on MP4 shows a
satisfactory result, we use K = 9 in ADE20K dataset
due to the computational limitation. Additionally, we
use a specialized loss function to reduce intensive com-
putation which will be also explained in the following
section.

Lastly, we were unable to successfully train the
DINO architecture from scratch given our current re-
sources so we focused on applications of a pre-trained
model.

3.2. W-Net Results

The original soft N-cut loss method is dealing with
the pixel-wise weights for every pixel in the set which

includes computationally intensive matrix computa-
tion. Due to the computational limitation, we decided
to use one of its variants suggested by Odom [3]. It
uses a Gaussian spatial filter to compute the pixel-wise
weights which improves the efficiency of loss computa-
tion a lot.

To check how it works, we first trained W-Net in the
MP4 dataset and compare its result with U-Net. The
test results from two models can be found in Fig. 1 and
Fig. 2. Attached W-Net outputs are post-processed im-
ages using CRF implemented by [3]. Compared to the
U-Net, W-Net better captures the details like a wheel
of a car or a sharp edge of a tower. In this project, only
CRF is applied but if we can combine this together with
the hierarchical merging or another processing method,
we could improve the encoder result further. The de-
coder of W-Net is able to reconstruct the image similar
to the raw input Fig. 3.

Original Image Ground Truth Segmentation

Generated Segmentation

Figure 1. U-Net results on the MP4 test dataset

Ground Truth Segmentation Generated Segmentation

Figure 2. W-Net results on the MP4 test dataset



Original Image

Reconstructed Image

Figure 3. Image reconstruction using W-Net

Next, W-Net is trained on the ADE20K dataset to
be used as a baseline. Similar to the previous result,
W-Net can capture some edge features. We can see
the detailed features of a tower and frames of a win-
dow in the encoder output. Fig. 4. However, it fails
to segment the entire object. One of our biggest lim-
itations is computational resources and time. We set
K= 9 and use 30 epochs to reduce computation but
this might prevent the model from converge. Also, the
use of a variant method of Soft N-Cut Loss could af-
fect the performance either. As future work, it could
be worthwile to train the W-Net with K = 150 and
additional epochs to find the optimal parameters for
ADE20K dataset.

3.3. Vision + Mask Transformer (Segmenter) Re-
sults

As indicated previously, our backbone for the Seg-
meter model is a “tiny” vision transformer, where the
“tiny” indicates the reduced size of each token (192),
which is much smaller than the its standard size (768).
This does not allow as much information to be embed-
ded but makes the model feasible to train.

Regardless, we obtain satisfactory results as seen in
Fig. 5 from our Segmenter implementation. There ap-
pear pretty clear separations and fine details of the dif-
ferent objects even with the comparatively large patch
size of 16x16 to the original image size of 384x384. al-

Ground Truth Segmentation

Figure 4. W-Net results on the ADE20K dataset

though in the image of the chairs it doesn’t seem as
accurate. The original paper states that improved re-
sults may be obtained by increasing the embedding
depth with more transformer layers or by decreasing
the patch size but this comes at the penalty of train-
ing cost; the tiny vision transformer returns about 58
frames per second whereas the larger models can drop
to less than 1 per second. Therefore, if this model is
implemented in any form of autonomous robotics, we
have to consider this important trade-off.

To compare our model to what the large state-of-
the-art model can produce, we used pre-trained models
offered by MMSegmentation [2] from Open MMLab.
We can clearly see in Fig. 6 that it has resolved much
finer details especially when looking at the complex
structures of the chair/table.

3.4. DINO Results

DINO is an extremely large model that has two con-
current vision transformer models ranging from 20 to
over 80 million parameters. Also like most other state-
of-the-art unsupervised models, the model has to also
train on extremely large datasets. The original imple-
mentation offered by Facebook had pre-trained models
that were trained for roughly 2 days on the entirety of
ImageNet across a 16 GPU multi-node system. Run-
ning their optimized model locally on our available sys-
tem would have taken between 14 and 16 days to train
to reach comparable performance.

Instead of attempting to train this model ourselves,
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Figure 5. Segmenter results with a patch size of 16x16 on
the ADE20K dataset

Segmentor

Image Ground Truth

Figure 6. Segmenter results with a patch size of 8x8 on the
ADE20K dataset

we decided to explore some of the properties that it can
extrapolate from an image or video. The main aspect
that we were interested in was plotting the attention
maps to see what parts of an image is focused on. To

get the most detailed maps, we used the large vision
transformer with a patch size of 8x8. The process of ex-
tracting the attention map is to run an image through
the entire model and store the keys, queries, and val-
ues of the last transformer block. We can permute our
keys and queries back to the correct shapes and then
perform a dot product between the queries and trans-
pose the keys. Beware that these are the weights that
we use that are then scaled and applied softmax oper-
ation before multiplying to our values. Here are some
of the visual outputs of our fully unsupervised DINO
segmentation:

We can see in our Fig. 7 that the generated attention
maps can perform very detailed segmentation of the
most salient parts of an image. We can see evidence of
this detail especially from the image of the deer, where
it was able to select the horns as well. Another point of
interest is the model tends to focus on the face of the
animals. We can see the highest weights in the deer and
bird being around the eye area, which is also similar to
attention behaviors of humans. A limitation of DINO
is that we can only reliably expect this segmentation
behavior in classes found in ImageNet as that is the
underlying dataset it was trained on. Fortunately, due
to the unsupervised nature of DINO, we can always
extract additional images from sources like Flickr to
add more training data.

4. Conclusion

In this exploration, we investigated the benefits and
drawbacks of the architectures W-Net, Segmenter, and
DINO. The main purpose was to see the capabilities
of the attention mechanism within transformers for se-
mantic segmentation and if we are able to capture more
global structures within the image.

W-Net was a baseline for us to understand how tra-
ditional convolutional approaches can be used in unsu-
pervised image segmentation. We found that it is able
to extract edge details quite confidently from images,
but has two issues: 1) It focuses on specific features
of an object rather than the entire object such as the
wheels on a car, and 2) It requires a high amount of
computational resources and training time.

Segmenter is a supervised segmentation method that
uses a vision transformer backbone as well as a novel
mask transformer. We had very clear segmentation on
the ADE20K dataset using the tiny vision transformer
as our backbone. When using a pre-trained version on
the large vision transformer, there was a clear increase
in edge clarity and detail retention of the segmentation.

Lastly, DINO is an unsupervised contrastive embed-
ding method whose the goal is to learn embedded rep-
resentations of images that group objects of high simi-



Figure 7. Attention maps generated by DINO

larity together. By doing this procedure and studying
the weighted attention maps of the image, we get very
clear segmentation. This implies that in the process
of contrasting the embeddings, the model inherently
learns what parts of an image to focus on.

Although unsupervised approaches can give great
segmentation results, it is still important to be able to
identify at the pixel level what class the object belongs
to. In NLP and speech recognition, large models like
BERT and Wav2Vec undergo similar self-supervised
pre-training on large corpora of text or audio and then

fine-tuned on the limited labeled training data avail-
able. We can most likely employ a similar technique in
our case, where we fine-tune the Student Vision Trans-
former from DINO for different tasks. The benefit of
this type of contrastive learning is that the model is
not learning specific features for a task, but rather a
global sense of how images are related to one another,
making it possible to use for a multitude of downstream
applications.
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