

Efficient Extrinsic Self-Calibration of Multiple IMUs using Measurement Subset Selection

Jongwon Lee¹, David Hanley², and Timothy Bretl¹
¹Department of Aerospace Engineering, University of Illinois Urbana-Champaign, USA
² School of Informatics, University of Edinburgh, UK

INTRODUCTION

- For multi-IMU systems, estimating the relative position and orientation (pose) of IMUs extrinsic calibration — is essential
- Extrinsic calibration only with the measurement of IMUs themselves, requiring neither prescribed trajectories nor aiding sensors (e.g., cameras), is called self-calibration
- Self-calibration should be performed efficiently on large datasets, which are commonly generated during data collection (e.g., spacecraft in orbit, cars on the road) Jacobian: Function of the

We propose an efficient self-calibration method for multiple IMUs

by identifying high-utility data

Based on an existing approach [2,3]

Based on our prior work [1]

PROBLEM STATEMENT

- p: relative position q: relative orientation
- Given: Measurements $\mathcal{D} = \bigcup_{l=1}^{L} \mathcal{D}^{l}$
- ${}^{g}_{I}\mathbf{q}$: gyroscope misalignment ■ **To find:** Parameter estimate $\hat{\theta}^+$ while identifying an informative subset $\mathcal{D}^{info} \subseteq \mathcal{D}$

Given a candidate segment $\mathcal{D}^{\mathrm{new}}$ during iteration over the measurement segments...

EXISTING APPROACH (GREEDY ALGORITHM)

Step 1: State Initialization

Informative subset: \mathcal{D}^{info} ($\subset \{\mathcal{D}^1, ..., \mathcal{D}^{new-1}\}$) Parameter estimate: $\hat{\boldsymbol{\theta}}^-$

Step 3: Utility Gain Evaluation

$$f\left[\mathbf{\mathcal{J}}(\mathcal{D}^{\mathrm{info}}, \mathcal{D}^{\mathrm{new}})\big|_{\widehat{\boldsymbol{\theta}}^{+}}\right] - f\left[\mathbf{\mathcal{J}}(\mathcal{D}^{\mathrm{info}})\big|_{\widehat{\boldsymbol{\theta}}^{+}}\right] > \lambda$$
?

MODIFIED APPROACH

Step 1: State Initialization

Informative subset: $\mathcal{D}^{\text{info}}$ ($\subset \{\mathcal{D}^1, ..., \mathcal{D}^{\text{new}-1}\}$) Parameter estimate: θ^0

Step 3: Utility Gain Evaluation

$$f\left[\mathbf{\mathcal{I}}(\mathcal{D}^{\text{info}}, \mathcal{D}^{\text{new}})\big|_{\boldsymbol{\theta}^{\mathbf{0}}}\right] - f\left[\mathbf{\mathcal{I}}(\mathcal{D}^{\text{info}})\big|_{\boldsymbol{\theta}^{\mathbf{0}}}\right] > \lambda$$
?

Step 2: Recalibration

 $\hat{\boldsymbol{\theta}}^+ = \text{Calibrate}(\mathcal{D}^{\text{info}}, \mathcal{D}^{\text{new}}; \hat{\boldsymbol{\theta}}^-)$

Step 4: State Update (If true in Step 3)

Our calibration aims to estimate extrinsic parameters:

 $\mathcal{D}^{info} \leftarrow \mathcal{D}^{info} \cup \mathcal{D}^{new}$ Parameter estimate: $\hat{\boldsymbol{\theta}}^- \leftarrow \hat{\boldsymbol{\theta}}^+$

runtime

/>lmin.

Step 2: Recalibration

 $\hat{\boldsymbol{\theta}}^+ = \text{Calibrate}(\mathcal{D}^{\text{info}}, \mathcal{D}^{\text{new}}; \hat{\boldsymbol{\theta}}^-)$

Step 4: State Update (If true in Step 3) $\mathcal{D}^{info} \leftarrow \mathcal{D}^{info} \cup \mathcal{D}^{new}$

runtime

Step 5: Final Calibration (After completing iterations)

 $\widehat{\boldsymbol{\theta}}^+ = \text{Calibrate}(\mathcal{D}^{\text{info}}; \boldsymbol{\theta}^0)$

SENSITIVITY ANALYSIS OF UTILITY

• A sensitivity analysis of the measured utility, $f[\mathcal{I}(\cdot)|_{\theta}]$, was performed by introducing $\delta \mathbf{p}$, $\delta \mathbf{q}$ from the true $\boldsymbol{\theta}$

- Information is more sensitive to q than to p
 - \rightarrow Good initial guesses for **q** is needed for successful measurement subset selection

RESULTS

- We compared the multi-IMU extrinsic self-calibration in three different calibration modes, each using distinct datasets:
 - The full set (Baseline)
 - Subset selected by the existing approach (Greedy (original))
 - Our modified approach (Greedy (init-param))
- The methods were evaluated over three trajectories, each lasting over 20 minutes

Trajectory		Baseline	Greedy (Original)	Greedy (Init-Param)
baseline (1274 [s])	\mathbf{p}_{I_1} [cm]	[-9.80 -9.82 -0.24]	[-9.85 -9.63 -0.34]	[-9.64 -9.58 -0.29]
	\mathbf{q}_{I_1} [deg]	[4.15 3.28 0.27]	[3.39 2.01 -0.42]	[1.98 0.61 -0.40]
	\mathbf{q}_{g_0} [deg]	[-0.74 -0.45 0.04]	[2.47 4.34 -1.08]	[-0.90 1.06 0.21]
	$\mathbf{q}_{g_1} \; [\deg]$	[3.11 3.31 0.45]	[5.62 6.82 -1.05]	[0.84 2.12 0.09]
	Selected segments [%]	100.00	0.73	1.14
	Runtime [s]	64.09	16.15	0.98
blurry (1388 [s])	\mathbf{p}_{I_1} [cm]	[-9.81 -9.77 -0.26]	[-9.84 -9.78 -0.30]	[-9.79 -9.72 -0.27]
	\mathbf{q}_{I_1} [deg]	[5.27 4.27 0.25]	[2.22 0.98 -0.25]	[1.96 0.96 -0.65]
	\mathbf{q}_{g_0} [deg]	[-2.96 -2.74 0.00]	[-0.43 -0.06 -0.27]	[-1.76 -1.13 0.45]
	\mathbf{q}_{g_1} [deg]	[2.03 2.11 0.20]	[1.65 1.28 -0.19]	[0.09 0.15 0.05]
	Selected segments [%]	100.00	1.94	0.82
	Runtime [s]	75.81	51.01	0.90
ill-lit (1276 [s])	\mathbf{p}_{I_1} [cm]	[-9.82 -9.86 -0.21]	[-9.67 -9.96 -0.14]	[-9.65 -9.83 -0.17]
	\mathbf{q}_{I_1} [deg]	[-5.03 -5.79 0.28]	[2.50 1.29 -0.02]	[5.03 3.50 0.10]
	\mathbf{q}_{g_0} [deg]	[-0.36 -0.34 0.02]	[1.70 0.69 -0.18]	[2.55 1.89 -0.40]
	\mathbf{q}_{g_1} [deg]	[-5.79 -5.58 0.39]	[3.82 2.42 0.02]	[7.24 6.20 0.21]
	Selected segments [%]	100.00	2.19	1.05
	Runtime [s]	73.75	59.37	0.99

IMU (top) and sensor rig (bottom) used for the experiments

- Greedy (original) and Greedy (init-param) select and use less than 3% of the full set to achieve calibration results that align with reference values
- Greedy (init-param) significantly reduces runtime compared to the baseline ($1min \rightarrow 1sec$), while Greedy (original) shows a modest reduction (>1 min \rightarrow ~1 sec)

CONCLUSIONS AND FUTURE WORK

- We proposed a method for multi-IMU extrinsic calibration by efficiently selecting high-utility measurement subsets
- We hypothesized that in our system, utility a function of parameter estimates is largely insensitive to the specific choice of parameters; this allows for evaluation at an initial guess, reducing the need for frequent recalibrations
- To support this hypothesis, we conducted a sensitivity analysis of utility in future, it may be helpful to provide further evidence by comparing the segments selected by Greedy (original) and Greedy (init-param)

REFERENCES

[1] J. Lee, D. Hanley, and T. Bretl, "Extrinsic calibration of multiple inertial sensors from arbitrary trajectories," IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 2055–2062, 2022.

[2] J. Maye, P. Furgale, and R. Siegwart, "Self-supervised calibration for robotic systems," in Proc. IEEE Intell. Veh. Symp., 2013, pp. 473–480. [3] J. Maye, H. Sommer, G. Agamennoni, R. Siegwart, and P. Furgale, "Online self-calibration for robotic systems," Int. J. Robot. Res, vol. 35, no. 4, pp. 357-380, 2016.

ACKNOWLEDGEMENT

- This work was supported by NASA under Grant STTR-80NSSC20C0020.
- Travel funding was provided by Supernal, LLC, with additional support from the author's current internship at Google in approving the travel.

PAPER

LINKEDIN