

Efficient Extrinsic Self-Calibration of Multiple IMUs using Measurement Subset Selection

Jongwon Lee¹, David Hanley², and Timothy Bretl¹

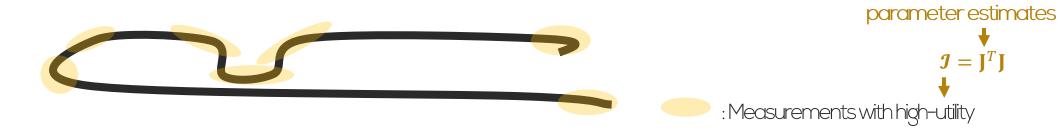
¹Department of Aerospace Engineering, University of Illinois Urbana-Champaign, USA ²School of Informatics, University of Edinburgh, UK

Introduction

- Extrinsic calibration, estimating the relative pose of IMUs, is essential for multi-IMU systems
- Self-calibration uses only IMU data, without prescribed trajectories or external sensors (e.g., cameras)

Our contribution

 Self-calibration must be efficient for large datasets, which are common outcomes in data collection scenarios (e.g., spacecraft, vehicles)



We propose an efficient self-calibration method for multiple IMUs

by identifying high-utility data

Based on an existing approach ("Greedy algorithm")

Based on our prior work (RAL'22)

Jacobian: Function of

the measurements and

Problem statement

- Given: Measurements $\mathcal{D} = \bigcup_{l=1}^{L} \mathcal{D}^{l}$

- **To find:** Parameter estimate $\hat{m{ heta}}$ while identifying an informative subset

 $\mathcal{D}^{info} \subseteq \mathcal{D}$

Our calibration aims to estimate extrinsic parameters:

- p: relative position
- q: relative orientation
- ^g_Iq: gyroscope misalignment

Existing approach (Greedy algorithm)

Given a candidate segment $\mathcal{D}^{\mathrm{new}}$ during iteration over the measurement segments...

Step 1: State Initialization

Informative subset: $\mathcal{D}^{\text{info}} (\subset \{\mathcal{D}^1, ..., \mathcal{D}^{\text{new-1}}\})$

Parameter estimate: $\hat{\boldsymbol{\theta}}^-$

Step 3: Utility Gain Evaluation

$$f\left[\mathbf{J}(\mathbf{D}^{\text{info}}, \mathbf{D}^{\text{new}})\big|_{\widehat{\mathbf{\theta}}^{+}}\right] - f\left[\mathbf{J}(\mathbf{D}^{\text{info}})\big|_{\widehat{\mathbf{\theta}}^{+}}\right] > \lambda$$
?

Step 2: Calibration

$$\hat{\boldsymbol{\theta}}^+ = \text{Calibrate}(\mathcal{D}^{\text{info}}, \mathcal{D}^{\text{new}}; \hat{\boldsymbol{\theta}}^-)$$

Step 4: State Update (If true in Step 3)

 $\mathcal{D}^{\text{info}} \leftarrow \mathcal{D}^{\text{info}} \cup \mathcal{D}^{\text{new}}$

Parameter estimate: $\hat{\boldsymbol{\theta}}^- \leftarrow \hat{\boldsymbol{\theta}}^+$

Modified approach

Given a candidate segment $\mathcal{D}^{\mathrm{new}}$ during iteration over the measurement segments...

Step 1: State Initialization

Informative subset: \mathcal{D}^{info} ($\subset \{\mathcal{D}^1, ..., \mathcal{D}^{new-1}\}$)

Parameter estimate: θ^0

Step 3: Utility Gain Evaluation

$$f\left[\mathcal{J}(\mathcal{D}^{\text{info}}, \mathcal{D}^{\text{new}})\Big|_{\Theta^0}\right] - f\left[\mathcal{J}(\mathcal{D}^{\text{info}})\Big|_{\Theta^0}\right] > \lambda$$
?

Step 2: Calibration

$$\hat{\boldsymbol{\theta}}^+ = \text{Calibrate}(\mathcal{D}^{\text{info}}, \mathcal{D}^{\text{new}}; \hat{\boldsymbol{\theta}}^-)$$

Step 4: State Update (If true in Step 3)

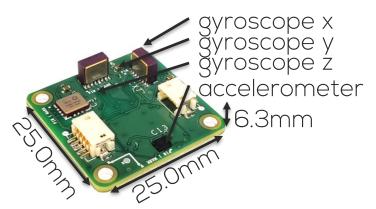
$$\mathcal{D}^{info} \leftarrow \mathcal{D}^{info} \cup \mathcal{D}^{new}$$

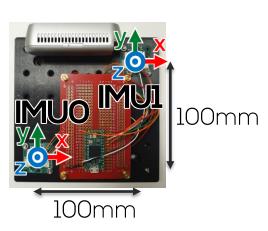
Step 5: Final Calibration (After completing iterations)

$$\hat{\boldsymbol{\theta}}^{+} = \text{Calibrate}(\mathcal{D}^{\text{info}}; \boldsymbol{\theta}^{0})$$

Evaluation: Comparison against benchmarks

- We compared the multi-IMU extrinsic self-calibration in three different calibration modes:
 - The full set (Baseline)
 - Subset selected by the existing approach (Greedy (original))
 - Our modified approach (Greedy (init-param))
- The methods were evaluated over three trajectories, each lasting over 20 minutes





IMU (left) and sensor rig (right) used for the experiments

Results

- Both Greedy algorithms select and use less than 3% of the full set, without compromising the calibration results
- Greedy (init-param) significantly reduces runtime compared to the baseline (>1 min → ~1 sec), and even to Greedy (original) (~1 min → ~1 sec)

Trajectory		Baseline	Greedy (Original)	Greedy (Init-Param)
baseline (1274[s])	\mathbf{p}_{I_1} [cm]	[-9.80 -9.82 -0.24]	[-9.85 -9.63 -0.34]	[-9.64 -9.58 -0.29]
	\mathbf{q}_{I_1} [deg]	[4.15 3.28 0.27]	[3.39 2.01 -0.42]	[1.98 0.61 -0.40]
	\mathbf{q}_{g_0} [deg]	[-0.74 -0.45 0.04]	[2.47 4.34 -1.08]	[-0.90 1.06 0.21]
	$\mathbf{q}_{g_1} \; [deg]$	[3.11 3.31 0.45]	[5.62 6.82 -1.05]	[0.84 2.12 0.09]
	Selected segments [%]	100.00	0.73	1.14
	Runtime [s]	64.09	16.15	0.98
blurry (1388 [s])	\mathbf{p}_{I_1} [cm]	[-9.81 -9.77 -0.26]	[-9.84 -9.78 -0.30]	[-9.79 -9.72 -0.27]
	\mathbf{q}_{I_1} [deg]	[5.27 4.27 0.25]	[2.22 0.98 -0.25]	[1.96 0.96 -0.65]
	\mathbf{q}_{g_0} [deg]	[-2.96 -2.74 0.00]	[-0.43 -0.06 -0.27]	[-1.76 -1.13 0.45]
	\mathbf{q}_{g_1} [deg]	[2.03 2.11 0.20]	[1.65 1.28 -0.19]	[0.09 0.15 0.05]
	Selected segments [%]	100.00	1.94	0.82
	Runtime [s]	75.81	51.01	0.90
ill-lit (1276 [s])	\mathbf{p}_{I_1} [cm]	[-9.82 -9.86 -0.21]	[-9.67 -9.96 -0.14]	[-9.65 -9.83 -0.17]
	\mathbf{q}_{I_1} [deg]	[-5.03 -5.79 0.28]	[2.50 1.29 -0.02]	[5.03 3.50 0.10]
	\mathbf{q}_{g_0} [deg]	[-0.36 -0.34 0.02]	[1.70 0.69 -0.18]	[2.55 1.89 -0.40]
	\mathbf{q}_{g_1} [deg]	[-5.79 -5.58 0.39]	[3.82 2.42 0.02]	[7.24 6.20 0.21]
	Selected segments [%]	100.00	2.19	1.05
	Runtime [s]	73.75	59.37	0.99

p: relative position, **q**: relative orientation, g_I **q**: gyroscope misalignment \mathbf{p}_{ref} : [100,100,0] \pm [250,250,63] mm, \mathbf{q}_{ref} : g_I \mathbf{q}_{ref} : (**e**,0°) \pm (**e**,9.5°) for $\forall \mathbf{e} \in \mathbb{R}^3 \setminus \{0\}$ (angle-axis)

Conclusion

- We proposed a method for multi-IMU extrinsic calibration by efficiently selecting high-utility measurement subsets
- We hypothesized that utility a function of parameter estimates is largely insensitive to specific parameter choices
- This eliminates the need for frequent recalibrations, significantly reducing runtimes compared to existing subset selection methods

