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Extrinsic Calibration of Multiple Inertial Sensors From Arbitrary Trajectories

INTRODUCTION
▪ The simultaneous use of multiple IMUs—as compared with a single IMU of the same total size, 

weight, power, and cost—may have three benefits:
▪ Higher measurement accuracy
▪ Increased bandwidth
▪ Better fault tolerance

▪ It is necessary to perform extrinsic calibration—to estimate the relative position and orientation 
of each IMU—in order to realize these benefits

▪ We propose a method of extrinsic calibration for multiple IMUs that does not require 
instruments (e.g., rate tables) or aiding sensors (e.g., a camera) and that can be applied to data 
collected in-flight along arbitrary trajectories

▪ Our method is based on solving a nonlinear least-squares problem that penalizes inconsistency 
between measurements from pairs of IMUs

METHOD

▪ Each IMU’s measurement is modeled as:

▪ Accelerometer: 𝐼 ෤𝐚 = 𝐼𝐚𝑊𝐼 − 𝐼𝐠 + 𝐛𝑎 + 𝐧𝑎

▪ Gyroscope: 
𝑔

෥𝛚 = 𝐂 𝐼
𝑔

𝐪 𝐼𝛚𝑊𝐼 + 𝐛𝑔 + 𝐧𝑔

RESULTS
▪ We compare our method to Kalibr, a convenient benchmark for multi-IMU extrinsic calibration
▪ Kalibr needs a camera and fiducial marker, which accompany failure cases depending on visual conditions
▪ Both methods are tested over 65 trajectories (60 seconds for each) collected in three different conditions:

CONCLUSIONS AND FUTURE WORK
▪ We proposed a method of extrinsic calibration for multiple IMUs that only uses measurements 

collected by the IMUs themselves along arbitrary trajectories
▪ We used all available measurements for extrinsic calibration—in future, it may be helpful to 

choose a subset of measurements in order to decrease computation time and increase robustness
▪ We assumed measurements were time-synchronized—in future, it may be possible to include 

time synchronization as part of the extrinsic calibration process

IMU1 (𝓕𝑰𝟏
): 

𝐼1 ǁ𝐚𝑘, 𝑔1෥𝛚𝑘

World (𝓕𝑾)

IMU0 (𝓕𝑰𝟎
) : 

𝐼0 ǁ𝐚𝑘, 𝑔0෥𝛚𝑘

baseline (21 trajectories) blurry (23 trajectories) ill-lit (21 trajectories)

▪ We acknowledge that the reference value we used—𝐩ref and 𝐪ref derived from the optical breadboard on 

which sensors are mounted and zero gyroscope misalignment 𝐼
𝑔

𝐪ref—can be a source of error themselves

▪ Hence, we focus on establishing that both our method and Kalibr produce “comparable” errors with respect 
to these reference values, rather than on rigorously establishing that our method produces “lower” error

▪ Under the baseline condition, our method matches the performance of Kalibr
▪ Under the blurry and ill-lit conditions, Kalibr often fails, whereas our method is unaffected

𝐩: relative position, 𝐪: relative orientation, 𝐼
𝑔

𝐪: gyroscope misalignment

𝐩ref : 100,100,0 ± 25.0,25.0,6.3  mm,  𝐪ref, 𝐼
𝑔

𝐪ref : (𝐞,0∘) ± (𝐞,9.5∘ ) for ∀ 𝐞 ∈ ℝ𝟑 \ {𝟎} (angle-axis)

6.3mm

accelerometer

gyroscope x

gyroscope y

gyroscope z

IMU used for the experiments
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specific force of frame 𝐼 with respect to frame 𝑊 expressed in frame 𝐼

time-varying bias described by random walk; 𝐛𝑎, 𝑘+1 − 𝐛𝑎, 𝑘 ~ 𝜎𝐛𝑎
∆𝑡 ∙ 𝒩(𝟎,𝟏)

white noise;  𝐧𝑎~ 𝜎𝑎/ ∆𝑡 ∙ 𝒩(𝟎,𝟏)

angular rate of frame 𝐼 with respect to frame 𝑊 expressed in frame 𝑔 (=
𝑔

𝛚𝑊𝐼 =
𝑔

𝛚𝑊𝑔)

white noise; 𝐧𝑔~ 𝜎𝑔/ ∆𝑡 ∙ 𝒩(𝟎,𝟏)

time-varying bias described by random walk; 𝐛𝑔, 𝑘+1 − 𝐛𝑔, 𝑘 ~ 𝜎𝐛𝑔
∆𝑡 ∙ 𝒩(𝟎,𝟏)

unit quaternion 𝐼
𝑔

𝐪 ∈ ℍ parametrizing orientation of frame 𝐼 with respect to frame 𝑔 (i.e., gyroscope misalignment) 

operator converting unit quaternion 𝐼
𝑔

𝐪 ∈ ℍ to corresponding rotation matrix 𝐼
𝑔

𝐑 ∈ 𝑆𝑂(3)

▪ Given: 
𝐼0 ෤𝐚𝑘, 

𝑔0 ෥𝛚𝑘, 
𝐼1 ෤𝐚𝑘, 

𝑔1 ෥𝛚𝑘 for each time 𝑘 ∈ 1, … , 𝐾

▪ To find: 
𝐼0𝐩𝐼0𝐼1 ∶= 𝐩 ∈ ℝ3, 𝐼1

𝐼0𝐪 ∶= 𝐪 ∈ ℍ, 𝐼0

𝑔0𝐪 ∈ ℍ, 𝐼1

𝑔1𝐪 ∈ ℍ,

 𝐛𝑎0, 𝑘, 𝐛𝑔0, 𝑘, 𝐛𝑎1, 𝑘, 𝐛𝑔1, 𝑘, 
𝐼0𝛂𝑊𝐼0, 𝑘 ∶=

𝐼0𝛂𝑘

▪ min σ𝑘

𝐫𝑎 𝚺𝑎

2 + 𝐫𝑔 𝚺𝑔

2

+ 𝐫𝐛𝑎0 𝚺𝐛𝑎

2
+ 𝐫𝐛𝑎1 𝚺𝐛𝑎

2
+ 𝐫𝐛𝑔0 𝚺𝐛𝑔

2
+ 𝐫𝐛𝑔1 𝚺𝐛𝑔

2

▪ 𝐫𝑎 =
𝐼1 ො𝐚𝑘 − (

𝐼1 ෤𝐚𝑘 − 𝐛𝑎1, 𝑘)

▪ 𝐫g =
𝑔1 ෝ𝛚𝑘 − (

𝑔1 ෥𝛚𝑘 − 𝐛𝑔1, 𝑘)

▪ 𝐫𝐛𝑎0
= 𝐛𝑎0, 𝑘+1 − 𝐛𝑎0, 𝑘,   𝐫𝐛𝑎1

= 𝐛𝑎1, 𝑘+1 − 𝐛𝑎1, 𝑘

▪ 𝐫𝐛𝑔0
= 𝐛𝑔0, 𝑘+1 − 𝐛𝑔0, 𝑘, 𝐫𝐛𝑔1

= 𝐛𝑔1, 𝑘+1 − 𝐛𝑔1, 𝑘

▪ 𝚺𝑎 = 2𝜎𝑎
2/Δ𝑡 + 𝜎𝑔

2/Δ𝑡
2

⋅ 𝐈3×3,  𝚺𝑔 = 2𝜎𝑔
2/Δ𝑡 ⋅ 𝐈3×3, 

𝚺𝐛𝑎
= 𝜎𝐛𝑎

2  Δ𝑡 ⋅ 𝐈3×3,  𝚺𝐛𝑔
= 𝜎𝐛𝑔

2  Δ𝑡 ⋅ 𝐈3×3

slack variables; their estimation is not main focus

accelerometer measurement of IMU1

accelerometer bias of IMU1

specific force reconstructed by IMU0 measurement

𝐼1 Ƹ𝐚𝑘 = 𝐂 𝐼1

𝑔1𝐪
−1 𝐼0 Ƹ𝐚𝑘  +

𝐼0ෝ𝛚𝑘 ×

2
𝐩 +

𝐼0𝛂𝑘 ×
𝐩 , where 

𝐼0 Ƹ𝐚𝑘 =
𝐼0 ǁ𝐚𝑘 − 𝐛𝑎0, 𝑘 and 

𝐼0ෝ𝛚𝑘 = 𝐂 𝐼0

𝑔0𝐪
−1

(
𝑔0෥𝛚𝑘 − 𝐛𝑔0, 𝑘)

gyroscope measurement of IMU1

gyroscope bias of IMU1

angular rate reconstructed by IMU0 measurement

𝑔1ෝ𝛚𝑘 = 𝐂 𝐼1

𝑔1𝐪  𝐂 𝐪 −1𝐂 𝐼0

𝑔0𝐪
−1 𝑔0෥𝛚𝑘 − 𝐛𝑔0, 𝑘

* ∆𝑡: sampling interval;  (𝜎𝑎, 𝜎𝑔): square root of noise spectral density; (𝜎𝐛𝑎
, 𝜎𝐛𝑔

): bias instability

All data and code are freely available online: https://github.com/jongwonjlee/mix-cal
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