

Extrinsic Calibration of Multiple Inertial Sensors from Arbitrary Trajectories

Jongwon Lee, David Hanley, and Timothy Bretl May 25th, 2022

Why is Extrinsic Calibration of Multiple IMUs Necessary?

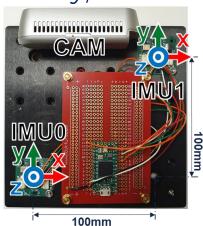

- Using multiple inertial measurement units (IMUs) has various applications:
 - Higher measurement accuracy
 - Increased bandwidth
 - Better fault tolerance
- It is essential to estimate the relative position and orientation (relative pose) of IMUs—so-called extrinsic calibration—before these applications

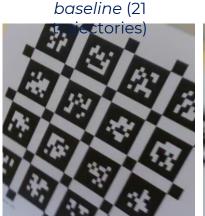
Our Contributions

- We especially focus on multi-IMU extrinsic calibration using neither instruments, aiding sensors, nor prescribed trajectory
- Existing approaches have limits:
 - Estimate only relative orientation, not position
 - Suitable for accelerometer-only arrays
 - Do not account for misalignment between accelerometer and gyroscope axes
- To address these issues, we solve a nonlinear least-squares problem penalizing the inconsistency between expected and actual IMU measurements

Solution Approach

■ Imagine a two-IMU system for example...




Evaluation: Comparison to Kalibr

 Our method is compared to **Kalibr** over 65 trajectories lasting 60 seconds for each

These trajectories were collected in three different conditions: baseline,

blurry, ill-lit

Averaged Results over 21 Trajectories in *Baseline*Condition

	Kalibr	Our Method
RMSE in p [mm]	4.39	1.64
RMSE in q [deg]	1.35	2.91
RMSE in $_{I}^{g}$ q [deg]	2.06	2.50
computation time [ms]	106.96 ± 16.34	4.61 ± 0.36
success rate	19 / 21	21 / 21

p: relative position, **q**: relative orientation, g_I **q**: gyroscope misalignment $\mathbf{p}_{ref}:[100,100,0] \pm [24.2,24.2,6.3] \, mm, \, \mathbf{q}_{ref}, {}^g_I\mathbf{q}_{ref}: (\mathbf{e},0^\circ) \pm (\mathbf{e},9.5^\circ) \, \text{for} \, \forall \, \mathbf{e} \in \mathbb{R}^3 \setminus \{\mathbf{0}\} \, \text{(angle-axis)}$

Our method shows comparable estimation to Kalibr with a shorter computation time

Averaged Results over 23 Trajectories in *Blurry*Condition

	Kalibr	Our Method
RMSE in p [mm]	70.41	2.02
RMSE in q [deg]	26.98	2.86
RMSE in $_{I}^{g}$ q [deg]	30.67	2.05
computation time [ms]	98.99 ± 12.27	4.74 ± 0.58
success rate	14 / 23	23 / 23

p: relative position, **q**: relative orientation, g_I **q**: gyroscope misalignment \mathbf{p}_{ref} : [100, 100, 0] \pm [24.2, 24.2, 6.3] mm, \mathbf{q}_{ref} , ${}^g_I\mathbf{q}_{ref}$: (**e**, 0°) \pm (**e**, 9.5°) for \forall **e** \in $\mathbb{R}^3 \setminus \{\mathbf{0}\}$ (angle-axis)

Kalibr frequently fails, our method always succeeds showing consistent performance

Averaged Results over 21 Trajectories in *III-lit*Condition

	Kalibr	Our Method
RMSE in p [mm]	107.42	1.37
RMSE in q [deg]	1.81	4.19
RMSE in $_{I}^{g}$ q [deg]	1.03	3.51
computation time [ms]	7.83 ± 0.28	5.16 ± 0.55
success rate	2 / 21	21 / 21

p: relative position, **q**: relative orientation, g_I **q**: gyroscope misalignment \mathbf{p}_{ref} : [100, 100, 0] \pm [24.2, 24.2, 6.3] mm, \mathbf{q}_{ref} , ${}^g_I\mathbf{q}_{ref}$: (**e**, 0°) \pm (**e**, 9.5°) for \forall **e** \in $\mathbb{R}^3 \setminus \{\mathbf{0}\}$ (angle-axis)

Kalibr mostly fails, our method always succeeds showing consistent performance

Conclusion

- We proposed a multi-IMU extrinsic calibration only using measurements collected along arbitrary trajectories
- We suggested constructing and solving a nonlinear leastsquare problem that addresses not only the extrinsic parameters but also gyroscope misalignment
- We showed our method is applicable to even in the conditions that a benchmark using an aiding sensor may fail

Please come and visit our Git repo! https://github.com/jongwonjlee/mix-cal

Jongwon Lee (jongwon5@illinois.edu)
David Hanley (hanley6@illinois.edu)
Timothy Bretl (tbretl@illinois.edu)

