The Use of Multi-Scale Fiducial Markers To Aid Takeoff and Landing Navigation by Rotorcraft

Jongwon Lee, Su-Yeon Choi, and Timothy Bretl University of Illinois Urbana-Champaign (UIUC) 2024 AIAA SciTech Forum January 8th, 2024

Copyright © by Jongwon Lee.
Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Introduction

Experiments

Results and Discussion

Conclusion

We investigate the use of multi-scale fiducial markers in visual SLAM for rotorcraft TOLD scenarios under diverse visibility conditions

We present the SLAM performance across diverse visibility conditions

TOLD: takeoff and landing

Introduction

Experiments

Results and Discussion

Conclusion

We investigate the use of multi-scale fiducial markers in visual SLAM for rotorcraft TOLD scenarios under diverse visibility conditions We present the SLAM performance across diverse visibility conditions

What is visual SLAM with fiducial markers (marker SLAM)?

- Simultaneous localization and mapping (SLAM) is a process through which a mobile robot constructs a map of its environment while simultaneously determining its own location
- Visual SLAM with fiducial markers (marker SLAM) uses easily detectable artificial visual patterns, called fiducial markers, to aid in tracking and mapping

The examples of various fiducial markers: AprilTag. ARTag,. ARToolKit, and ArUco, from left to right

Why is marker SLAM useful during TOLD scenarios of rotorcraft under VFR?

- In TOLD navigation scenarios for rotorcraft following VFR, accurate and reliable positioning is crucial
- Marker SLAM outperforms generic visual SLAM in various aspects, including both accuracy and reliability
- Therefore, choosing marker SLAM over generic visual SLAM is advantageous for TOLD navigation scenarios of rotorcraft adhering to **VFR**

TOLD: takeoff and landing; **VFR**: visual flight rule

Existing works on marker SLAM

- Some works (e.g., TagSLAM) entirely rely on marker detection results
- UcoSLAM introduces a hybrid approach using both marker and feature detection results, showing improved performance compared to relying solely on markers or features
- WOLF, an open-source modular SLAM framework, provides SLAM implementation using either marker and/or feature detections

^[1] Pfrommer, B., and Daniilidis, K., "Tagslam: Robust slam with fiducial markers," arXiv preprint arXiv:1910.00679, 2019.

^[2] Munoz-Salinas, R., and Medina-Camicer, R., "UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers," Pattern Recognition, Vol. 101, 2020, p. 107193. [3] Sola, J., Vallvé, J., Casals, J., Deray, J., Fourmy, M., Atchuthan, D., Corominas-Murtra, A., and Andrade-Cetto, J., "WOLF: A modular estimation framework for robotics based on factor graphs," IEEE Robotics and Automation Letters, Vol. 7, No. 2, 2022, pp. 4710–4717.

Ambiguities in existing literature regarding the evaluation of marker SLAM for application in rotorcraft TOLD scenarios

- Existing marker SLAM assessments use fiducial markers of uniform size, limiting their detectable distance range
 - → The use of single-scale markers may constrain SLAM performance in TOLD scenarios, where the distance between ground markers and the rotorcraft's camera varies significantly
- Existing marker SLAM assessments are conducted in controlled indoor environments with constant visibility conditions
 - ightarrow It is crucial to investigate how marker SLAM performs under various weather conditions, which are likely to be encountered during actual TOLD scenarios of rotorcraft

Contributions of our work

- We employ multi-scale fiducial markers to expand the detectable range during TOLD scenario of rotorcraft
- We evaluate marker SLAM using a dataset collected outdoors during actual TOLD scenario of rotorcraft in various weather conditions

Introduction

Experiments

Results and Discussion

Conclusion

We investigate the use of multi-scale fiducial markers in visual SLAM for rotorcraft TOLD scenarios under diverse visibility conditions

We present the SLAM performance across diverse visibility conditions

System for data collection

 We used a DJI Matrice 300 RTK rotorcraft equipped with two color cameras mounted at the bottom — one facing downward and the other oriented 45° forward

Multi-scale fiducial markers for data collection

 We proposed the use of two types of multi-scale fiducial markers integrated into the 1m² TLOF area aligning with the CD of the rotorcraft, namely non-nested and nested layouts

TLOF: touchdown and liftoff; **CD**: control dimension

Data collection

- We implemented a trajectory covering the TOLD phases of the rotorcraft, adhering to VFR approach/departure path requirements set by the FAA, maintaining an 8:1 ratio
 - Step 1: Ascend vertically to 5m altitude
 - Step 2: Move horizontally for 40m distance at 1m/s speed
 - Step 3: Return above the TLOF area at 1m/s speed
 - Step 4: Descend and land
- We collected data on two distinct dates (Nov. 30th and Dec. 2nd, 2023) at various times and weathers to encompass various visibility scenarios

Data collection (continued)

Data collection (continued)

Date	Weather						
	state	temp.	wind	illumination			
	sunny	10°C	5.3 m/s NE	6000 Lux (day)			
Nov. 30, 2023	drizzle	10°C	6.5 m/s NE	1200 Lux (day)			
	drizzle	9°C	7.3 m/s N	10-50 Lux (dusk)			
Dec. 2, 2023	cloudy	6°C	1.3 m/s S	4000 Lux (day)			

← Rotorcraft flights under diverse weathers (left column), with examples of images captured from the primary camera (mid column) and the secondary camera (right column) during each flight mission

Marker SLAM implementation

- We used WOLF, which offers SLAM using either marker and/or feature detections
- We evaluated two modes of marker SLAM provided by WOLF:
 - The mode relying solely on marker detection results (marker SLAM)
 - The mode using both marker and feature detection results (marker + feature SLAM)

Introduction

Experiments

Results and Discussion

Conclusion

We investigate the use of multi-scale fiducial markers in visual SLAM for rotorcraft TOLD scenarios under diverse visibility conditions

We present the SLAM performance across diverse visibility conditions

Results for non-nested multi-scale fiducial marker

Date	Weather			Trial -	Marker SLAM		Marker + Feature SLAM		
	state	temp.	wind	illumination	IIIai	ATE (m)	Availability	ATE (m)	Availability
	sunny	10°C	5.3 m/s NE	6000 Lux (day)	1	0.47	0.84	0.39	0.84
					2	2.04	0.84	2.56	0.83
					3	1.46	0.84	1.70	0.84
Nov. 30, 2023	drizzle	10°C	6.5 m/s NE	1200 Lux (day)	1	2.19	0.84	2.58	0.84
					2	3.56	0.84	4.92	0.84
					3	1.86	0.85	1.59	0.84
	drizzle	9°C	7.3 m/s N	10-50 Lux	1	-	-	-	-
				(dusk)	2	-	-	-	_
Dec. 2, 2023	cloudy	6°C	1.3 m/s S	4000 Lux (day)	1	2.00	0.84	1.82	0.84
					2	-	_	4.95	0.84
					3	0.33	0.84	0.54	0.84
					4	0.49	0.89	1.61	0.83

non-nested multi-scale fiducial marker

The evaluation metrics include:

- absolute trajectory error (ATE; lower is better)
- the fraction of the number of estimated poses to the total frame (availability; higher is better)
- SLAM fails under the lowest illumination condition (10-50 Lux)
- In comparing marker SLAM and marker + feature SLAM, no significant differences are evident in terms of both ATE and availability
 - → This may be due to the rotorcraft flying over a runway with limited texture, impacting feature point detection

Results for nested multi-scale fiducial marker

Date -	Weather			Trial	Marker SLAM		Marker + Feature SLAM		
	state	temp.	wind	illumination	111111	ATE (m)	Availability	ATE (m)	Availability
Nov. 30, 2023		10°C	5.3 m/s NE	6000 Lux (day)	1	1.00	0.80	0.77	0.82
	sunny				2	0.92	0.80	1.11	0.81
					3	0.69	0.80	0.78	0.81
	drizzle	10°C	6.5 m/s NE	1200 Lux	1	-	-	-	-
				(day)	2	0.90	0.81	0.96	0.83
		9°C	7.3 m/s N	10-50 Lux (dusk)	1	-	-	-	-
	drizzle				2	-	-	-	-
					3	-	-	-	-
Dec. 2, 2023	cloudy	6°C	1.3 m/s S	4000 Lux (day)	1	0.69	0.84	0.83	0.84
					2	1.46	0.80	0.98	0.82
					3	0.99	0.80	1.05	0.82
					4	0.77	0.80	0.90	0.81
					5	1.31	0.80	1.39	0.82
					6	0.79	0.78	0.88	0.97

nested multi-scale fiducial marker

The evaluation metrics include:

- absolute trajectory error (ATE; lower is better)
- the fraction of the number of estimated poses to the total frame (availability; higher is better)
- SLAM fails under the lowest illumination condition (10-50 Lux)
- In comparing marker SLAM and marker + feature SLAM, no significant differences are evident in terms of both ATE and availability
 - → This may be due to the rotorcraft flying over a runway with limited texture, impacting feature point detection

Introduction

Experiments

Results and Discussion

Conclusion

We investigate the use of multi-scale fiducial markers in visual SLAM for rotorcraft TOLD scenarios under diverse visibility conditions

We present the SLAM performance across diverse visibility conditions

Conclusion

- This work studies the application of visual SLAM with multi-scale fiducial markers in rotorcraft's TOLD scenario across diverse visibility conditions
- Future work particularly involves incorporating inertial measurement data to enhance SLAM accuracy and efficiency

Q&As

- This work is supported by Supernal, LLC.
- Both the code and dataset used in this paper are available online: https://github.com/tag-nav/wolf_ros

